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Selling k items for a sequence of buyers

Fach buyer t = 1,2,---, T"makes an offer v,

Accept it and sell 1 item, or wait for next one

Once sold, cannot be reclaimed

Opt(o)
a = I11dX

c [E[Alg(o)]

Time

e.g., k=2 T=14



Online Selection Problems

o A set of 1 items (one at a time)

e Select a subset § C T of items
(with possible constraints)

o Maximize objective V()
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0SCC: Online Selection w/ Gonvex Gosts

o A set of 1 items (one at a time)

e Select asubset S C T of items
(With possible constraints)

o Maximize objective V() @
_

convex & monotone

convex & monotone if y € [0,15],
f(y) = |
+ 00 otherwise.
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S0...how long
have you heen
circling for a spot?




e A setof 1 items (one at a time)

e Select a subset S C T of items
(With possible constraints)

e Maximize objective v(S) - f(S)
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t b
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0SCC: Basic Setting

Vmax

maximize

{X e

subject to

[V

min

T T
Z Vs _f( 2 At
=1 =1

T
th <k,
=1

x, = 10,1}, Vr.



0SCC: Basic Setting

Time

maximize
X v

subject to



Threshold Policies with Tight Guarantees for 0SGC

lim Gap(k) = 0

k— 00

a Optimal CR for
deterministic Algs
a™ = CR}(p, k)

Ayg------ommm -

07 S

ab CR'}’(ip, k)
Lower bhound for
all Algs (including

randomized)

P = max/ Vimin




Theorem 1: Optimal Threshold (Deterministic)

Theorem 1 (OPTIMAL T'HRESHOLD). Given a setup S = {f.Pmin,Pmax: k}, T10Sxe achieves the
optimal competitive ratio of all determanistic online algorithms, denoted by CR;-(p, k), of and only if

A" = {A5 AT - AY, - A% ) s an admission threshold such that

max

o The lower and upper limils: Aj = A7 = - -+ = AL = Puin and A7 = Prjax.

o The turning point T of the admission threshold is given by

- ginv( J* (Pmin) ) 1 (17)

T
-

CR} (p, k)

- Existence of many competitive TPs
- Uniqueness of optimal (deterministic) TP
- Optimality among all deterministic algs

.
.
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Theorem 1: Proofs and Intuitions

fA(p) = max  pi— fi)
i€{0.1,+- k)

- Initial flat phase

in@+ 1) = fz + 1) >~ )

04

- Strictly increasing phase

1

A|orima\ 2> o Adual
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Theorem 2: Lower Bound

Theorem 2 (Lower Bound). For any given setup 8 = {f, Pmin, Pmax. k}, no online elgorithms (possibly
randomized) is (CRI}’(p, k) — F.) -competitive for any € > (), where CR'fb (p, k) is given by

Pmink - f{k)

Ib
v where v is a real value within (0,k]. Specifically, lel us define the right-hand-side of Eq. (19) as
maX llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ' :::’I “ F(A‘((l}) to 1ndicatc that it is an cmphctjt functg_on Of ,:'(l) e (0’ k]. ’['ogcthcr w{th {":,'('8)}(-{2’- \E_£+2}.

they form a unique set of increasing positive real numbers (i.c., 0 < O < 4D < g AEERD o
A *EF2 = k) fhal salisfy

(£+1)
T FOMS ()

: Fiy(1))
(€) A
/ cxXp (5-+e—1 Y

dys VE = []—C — K+ 1]’

¢k +e-1) ¢Ok+£-1) /

F(~(1)) P~
exp (1:-(%&—1) ,(f+1)) oxXp (Eie_ljfy(fl)

where q(ﬂ = Ck4$-1 fOT £= {2~ 3, ak - ,.C i 1}’ q(]} = Pmins and q(E—k+2) = Pmax-

G b
q
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Piece-wise continuous threshold w/
fractional end points
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A special case

Even the highest (marginal) cost is still
............................................................................... less than the lowest possible value

max
Vmax Vmin 1 Jk le /(y ) d
— Y
exp(a)  exp (y(l)a/k) k J,0 exp (ya/k)
cRIP). k) = Vmink — J(K)
P i = £y V)
Online selection w/o costs: f = 0
\ VY - E }/(1) — —k
i — [+1np

0 W k CR]lcb(p, k)=1+1np



q(i+1)

Theorem 3: Asymptotic Gonvergence

/

(1)

N\
i
=

14

a Optimal CR for
A deterministic Algs

a* = CR}(p, k)
a3o
Ay @
Lower hound for
14 all Algs (including
randomized)
— s
1721 7 23 “

Theorem 3 (AsYMPTOTIC LOWER BOUND). For any given setup & = {f, Pmin, Pmax, k}, TOSy-~ is
asymptotically optimal among all online algorithms (including those with randomization) when k 1s
sufficiently large, namely,

lim CRG(p, k) = Tim CRE(p, k) = CR;(p), (22)

where CR((p) i the asymptotic lower bound that depends on [ and p only.

A two-segment threshold iIs enough
if & is sufficiently large!!



Lin.

—@— eXxponential
—&— quadratic
liInear

5 10 15
0

Iocosts‘-f‘() 1 _l_ lnp

v

Strongly convex

Higher value fluctuations —
worse guarantees (larger a*)

Faster cost growth —
better guarantees (smaller o*)
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Generalization and Variations

max Vt(xt) —  f(s) o %

X,EX,
/ S = (Sg, S1s 595 ***5 Sy ***, ST
Dynamics IR S
Action y

Convex value cost Linear / Nonlinear

Box Stationary / Non-stationary

S Ic_Dinear Ic_)mezr | Too complex
oncave uadratic
Inventory Strongly concave Polynomial
Deadlines Separable Convex
Binary Combinatorial Strongly convex
Separable

Non-convex
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Chasing Convex Bodies Optimally
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Abstract
In the chasing convex bodies problem, an online player receives a request sequence of N convex sets
Ky, ..., K n contained in a normed space X of dimension d. The player starts at o = 0 € X, and at time

n observes the set K, and then moves to a new point z, € K,, paying a cost ||zn — Zn-1||. The player
aims to ensure the total cost exceeds the minimum possible total cost by at most a bounded factor a4
independent of N, despite x,, being chosen without knowledge of the future sets K,,.,,..., Kx. The best
possible a4 is called the competitive ratio. Finiteness of the competitive ratio for convex body chasing
was proved for d = 2 in JFLQI}] and conjectured for all d. [BLLS19] recently resolved this conjecture,
proving an exponential 2°“ upper bound on the competitive ratio.

We give an improved algorithm achieving competitive ratio d in any normed space, which is ezactly
tight for £°. In Euclidean space, our algorithm also achieves competitive ratio O(y/dlog N), nearly
matching a v/d lower bound when N is subexponential in d. Our approach extends that of [BKL™20]
for nested convex bodies, which is based on the classical Steiner point of a convex body. We define the
functional Steiner point of a convex function and apply it to the associated work function.
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Abstract

We study the problem of chasing convex bodics online: given a sequence of convex bodices

K, € B? the algorithun must respond with points x; € K, in an online fashion (i.e., @, is chosen
hefaore K¢, is revealed). The objective is to minimize the sum of distances betwoen suceessive
points in this sequence. Bubeck et al. (STOC 2019) gave a 29“-competitive algorithm for
this problem. We give an algorithm that is Q{min(d, /dTogT))-competitive for any sequence
of length 7.

SODA 2020

SODA 2020
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Goncluding Remarks

e A set of 7T items (one at a time)

e Select a subset S C T of items
(with possible constraints)

» Online selection with convex costs

e Maximize objective v(S) — f(.S)

» Simple algorithms; Strong guarantees

) Variations; Open guestions

max ,(\» — f(s)

X EB\
s (s*(, 51587, 5 87)
S N S5 A
Actlon Dynamics
Ho)>
Hampint
Inventory fa mial

Value (:ost
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Time

lim Gap(k) =0
k— oo

Optimal CR for
deterministic Algs

a™® = CR}(p, k)
CR (p, )

Lower bound for
all Algs (including
randomized)
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